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1. I N T R O D U C T I O N  

A basic conceptual problem of nonequilibrium classical statistical mechanics 
is the derivation of the initial distribution function corresponding to certain 
experimental preparation procedures, using a minimum of additional assump- 
tions. Even in equilibrium classical statistical mechanics, the same problem 
exists because in practice measurements do not involve infinite time averages 
of properties of systems in arbitrary initial states--or arbitrary initial distri- 
butions in the context of  repeated experiments. In practice, the system is 
prepared to be initially in equilibrium, after which measurements are made, 

This research was supported by the U.S. Air Force Office of Scientific Research under 
Contract F44620-72-C-0072. 

1 Science Center, Rockwell International, Thousand Oaks, California. 
2 Present address: Electronics Research Division, Rockwell International, Anaheim, 

California. 

323 

�9 1974 Plenum Publishing Corporation, 227 West 17th Street, New York, N.Y. 10011. No part of  this publica- 
tion may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, 
mechanical, photocopying, microfilming, recording, or otherwise, without written permission o f  the publisher. 



324 J .M.  Richardson 

many of which can entail durations smaller than many of the characteristic 
relaxation times of  the system. 

In this paper we will address the problem of the initial distribution in 
a more general context than equilibrium or nonequilibrium statistical 
mechanics, namely that of adaptive control. 3 Since this context entails, after 
the initial preparation, observations alternating with control actions, certain 
kinds of arguments are not appropriate, e.g., the argument based upon the 
time average of  the process of waiting for a suitable fluctuation and making 
a delayed observation. Another important generalization of the problem 
demanded by adaptive control is the necessity of considering distributions 
representing macroscopic statistical uncertainty as contrasted with the 
microscopic uncertainty exemplified by, say, the microcanonical or canonical 
distributions. 

In this paper we prove that several kinds of  experimental preparation 
procedures lead in certain limits to initial probability distribution functions 
that are functions only of a prescribed set of macroscopic variables. However, 
we do not presume to derive all such distributions. This treatment is limited 
to general autonomous Hamiltonian systems. There is no attempt to deal 
with the limit of infinite volume (see, e.g., Ref. 2). In a corresponding sense, 
there is no attention given to the derivation of canonical or hypercanonical (a~ 
distributions. Two reasons for these limitations are that the generality of the 
Hamiltonian systems does not lend itself to definition of meaningful infinite 
sequences of  systems of increasing size without special assumptions and also 
that our investigation will include macroscopic statistical uncertainty. 

Our plan of action is the following. The first step is the derivation of the 
" p r i o r "  distribution at the time t = - 0  based upon the random selection 
of microstates at random past times. If  the system is ergodic, the limit of an 
infinitely broad distribution of  past times (i.e., infinite variance) leads to a 
prior distribution that is a function only of the Hamiltonian and any other 
measurable dynamical invariants that may exist. On the other hand, if the 
system has the mixing property, ~ then the weaker assumption that the average 
past time recedes to - oo  suffices to yield a prior distribution that is a function 
of the Hamiltonian and other measurable dynamic invariants. There are 
other kinds of  system behavior 5 other than ergodicity and mixing (which 
implies ergodicity); however, our treatment is limited to these two cases. 

3 Adaptive control involves control decisions that depend upon the past history of 
observations and control actions. The latter data may be summarized by the distri- 
bution function in state (e.g., phase) space with conditioning on past observations. For 
further discussion see Aoki. (1~ 

4 The concept of mixing was discussed by Gibbs c~ and was later generalized and rigorized 
by Hopf. (~ 

5 For reviews of modern investigations in ergodicity and allied topics the reader can 
consult Arnold and Avez. (6) 
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The only assumption underlying the derivation of the prior distribution 
is the rather weak one that the microstates and past times are statistically 
independent. 

The next step in the overall procedure is the relaxation of a force, the 
removal of a constraint, or the conditioning on a set of observations, pro- 
cesses that lead to initial distributions (mostly nonequilibrium) that are 
functions only of macroscopic variables. 

2. D E F I N I T I O N S  A N D  P R E L I M I N A R I E S  

The following paragraphs are devoted to definitions, notational con- 
vention, and background material. 

2.1, Microsta tes  

We will consider only the conventional phase space composed of the 
set of canonical coordinates and momenta represented by the row vector 

X = (p~ ,...,Ps, q~ ,..., qs) (1) 

where f i s  the number of degrees of freedom and qs and Ps are the coordinate 
and momentum, respectively, associated with the j th  degree of freedom. It 
is assumed that the domain of definition of X space is ~x. 

An integral in microstate space will be written 

f d X  g ( X )  (2) 

where d X  = 1~= 1 dqs dPs. The integration spans the domain ~x of micro- 
state space, a convention assumed for all subsequent integrations on X 
unless otherwise specified. 

In some situations, it is necessary or desirable to employ microstate 
spaces that are more complex than ordinary phase space. A well-known 
example of this is the kind of microstate space involved in the grand canonical 
ensemble. In adaptive control it is usual to include in the microstate certain 
system parameters that define the dynamics of  the system (e.g., masses, 
parameters in the interaction potential, etc.). 

2.2. Equations of Mot ion  

Since the present investigation is limited to Hamiltonian systems, the 
equations of motion of the coordinates and momenta are 

~ = aH/ap~, [~ = -OH/Oq~, i = 1 , . . . , f  (3) 
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The Hami l t on i an  funct ion  H is assumed to depend on  X alone and  no t  
explicitly on the t ime t. 

Wi th  the ini t ial  condi t ion  X(0) -- X0, the solut ion of the above equa- 
t ions of mo t ion  can be expressed in the form 

X(t)  = U(t, Xo) (4) 

where 

U(0, X0) = X(0) = X0 (5) 

This result is valid for negative as well as positive times. I t  follows f rom (3) 
that  

U(tl + t2; Xo) = U(tl; U(t2, Xo)) (6) 

a result  that  is valid whether q and  t2 have the same sign or not.  

2.3, D is t r ibut ion  Funct ions 

At a given time, t = 0 say, we assume that  a d is t r ibut ion  func t ion  6,7 

P(X; 0) can be defined such that  P ( X ~  0 ) d x  ~ is the probabi l i ty  that  the 
microstate vector X lies in the volume element d X  ~ at X ~ in X space. A t  

another  t ime t ~ 0, the d is t r ibut ion  func t ion  can be defined by 

P(X;  t) a_ f dX'  P(X" ; 0) 3(X - U(t, X ' ) )  (7) 

which reduces to an identi ty as t -+  0. The preservat ion of  normal iza t ion,  

i.e., fdXP(X;O)= 1 implies f dXP(X; t)= 1, can be directly demon-  
strated. 

I t  follows from (3) and  (4) that  P(X; t) satisfies the Liouville equat ion  

(OP/Ot)(X; t) + 5r t)  = 0 (8) 

6 In this paper we will use the term "distribution function" to be synonymous with the 
term "probability density" employed in the probability and statistics literature. 

7 In this paper we will use rather special notational conventions in relation to prob- 
ability. The symbol P(X, Y) denotes the distribution function with respect to X and Y 
which are in turn assumed to be continuous variables or sets of continuous variables. 
In the case where a variable may lose its description function by being substituted by 
another expression, we will introduce the original variable also as a subscript. For 
example, in Section 2.5 we will introduce a distribution function Pn(r/) in which the 
argument is replaced by z - F(X), thereby obtaining P,(z - F(X)), whereupon the 
subscript ~ indicates what distribution function it is. The preceding of a quantity by 
a [ indicates that the distribution is conditioned on this quantity. The preceding of a 
quantity by a semicolon indicates that it is a parameter. For example, P(XIz; -0)  
means that the distribution on X is conditioned by z [or z = F(X) + n] at the time 
t = - 0 .  Sometimes the time is used to imply past conditioning. 
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where 5e is the Liouville operator defined by 

= 1 8qi 8q~ 8-p~ 

without i multiplying the rhs as is frequently done. It can be shown that 

f d X g ~ h =  - f  dX h~q~g (10) 

where g(X) and h(X) are functions that are arbitrary under the constraints 
that the integrals exist. It is implicitly assumed that the boundary conditions 
are such that 

f dXS~(gh) = 0 (11) 

Thus, from (9) and (10), it is evident that 5e is real and anti-Hermitian or 
alternatively i~ce is Hermitian. 

The formal solution of (8) is 

P(X; t) = e-t'~p(x; 0) (12) 

In the subsequent discussion we will consider only those initial distributions 
P(X; 0) for which the above solution exists. 

Combining (12) with (7), we obtain 

e-tZep(x; O) = f dX' 3(X - U(t, X'))P(X' ; 0) (13) 

Multiplication by the arbitrary funct ionf(X)  and integration on X yields 

f ax[e - f(X)lP(X; o) = f ax f(u(t, x))P(x,  0) (14) 

from which it follows that 

etSef(X) = f(U(t, X)) (15) 

This implies the further relations 

etZX = U(t, X) (16) 

et~ef( X) = f(et~ X) (17) 

e(x ;  t) = e(u(-t ,  x);  0) (18) 

If  the microstate vector contains system parameters in addition to 
coordinates and momenta, the above results are valid as long as the system 
parameters are dynamically invariant. Of course, with a microstate space of 
the kind occurring in the grand canonical ensemble, the integrations on X 
must be altered in a well-known way. 
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2.4.  M a c r o s t a t e s  

We define a macrostate to be the set of values of  a set of  macroscopic 
variables %, k = 1 ,..., m, where m is assumed to be much smaller than the 
dimensionality of  the microstate X, i.e., 2 f  in the case of ordinary phase 
space. Each macroscopic variable is assumed to be a function only of the 
microstate, i.e., 

% = %(X) (19) 

For  convenience we introduce the vector function 

c~(X) = (al (X)  .... , %,(X)) (20) 

We denote the range of a(X)  by ~ ,  i.e., the domain of definition of a space. 
It  is convenient to introduce the concept of macroscopic manifold ~ ' ,  

which is defined here as the set of  all functions of  a(X).  Alternatively, we 
can define dd as the set of  all linear combinations of 

8(a - a) & ImI 8(a~ - %) (21) 
k = l  

where the constant vector 

a = (al .... , am) (22) 

assumes a continuous set of  values in No, the range of ~. It  follows that 
1 E//{. We will impose the requirement on ~ that the Hamiltonian H and 
all observables, i.e., functions of  X that are actually observed, all belong to 
dL 

We next introduce the notion of various kinds of  shells in X space. 
The most familiar is the H shell, or energy shell, defined as the set of  points 
in X space consistent with the inequality 

E < H ( X )  < E + dE (23) 

An % shell is correspondingly defined as the set of points consistent with the 
inequality 

a~ <~ % ( X )  < a~ + da~ (24) 

Of  particular interest is the a shell defined as the set of  points in X space 
consistent with the set of inequalities 

ak <~ % ( X )  < a~ + dak, k = 1 ..... m (25) 

It  is clear that other shells can be defined by making obvious modifications 
of  the above definitions. 

The volume of an H shell is 

d~H = An(E) dE (26) 
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where Aa(E) is the structure function of an H shell given by 

An(E) = f dX 8(E - H) 

Correspondingly, the volume of an c~ shell is 

d~)~ = A~(a) da 

where 

(27) 

(28) 

da = 1 1  dak (29) 
k = l  

and where the structure function for an ~ shell is given by 

f a~(a) = d X a ( a - ~ ) =  dXl- ~ a(a~- ~) (30) 

The equations for the volume of  an % shell and the corresponding structure 
function are obvious. 

A distribution function P(X) in X space will be called coarse-grained 
if it is uniform in each c~ shell. Thus it is a function only of ~ and we will 
write 

P(X) = P % )  (31) 

It is clear that 

P~ 0 = (gP(X) (32) 

where (g is the coarse-graining operator (corresponding to all) defined by 

 f(X) -- [ f dx'  f(X') - a ')]/ f  dX' - 

= A a ( a ) - l f  dX ' f (X ' )  8(~ - o:') (33) 

where f ( X )  is an arbitrary function. If  P(X) is not uniform in each ~ shell, 
it can be made so by application of the coarse-graining operator cg. 

The distribution function P(a) in a space is defined by the statement that 
P(a) da is the probability that a lies in the volume element da at a. It can be 
shown that 

P(a) & ( dX 8(a - ,~)P(X) = A~(a)P~(a) (34) 
J 

where A~(a) is defined by (30). 
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2.5. Observational Condit ioning 

We consider here the problem of calculating the distribution function 
after it has been conditioned 8 by the results of  a set of  observations. Let us 
assume that the prior distribution function is P(X; - 0 )  and that at the time 
t = 0, a set of  observations is made. Let the observational process be defined 
by 

z = F(X) + ~ (35) 

where z and ~/are n-vectors and F(X) is an n-vector function of the micro- 
state X. We require that F(X) be actually a function only of~,  i.e., Fj(X) ~ J4, 
j = 1 ,..., n. We further require that n ~< m. The observational errors are 
represented by ~7, a random m-vector which is assumed to be independent of 
X and whose probabil!ty distribution is P,(~). After observations are made, 
the joint distribution of X and z is 

f d X f  d~l' 3(X - X') 3(z - F(X')  - ~ ' )P(X ' ;  ~ 0 ~ P ~  ~ 

= P(X; - o ) e . ( z  - F(X)) (36) 

The observationally conditioned distribution function of X is obtained 
directly from the last expression by normalizing on X as follows: 

P(X; +0)  & P(XI  z; - 0 )  = e(z)P(X; -O)Pn(z - F(X)) (37) 

where the normalization " cons t an t "  c(z) is given by 

-1 = f d X P ( X ;  - o ) e , (  e - F(X)) (38) C( ~) 

In this expression we have used if, a particular value of z, instead of z itself 
to avoid the implicit dependence of z on X through (35). Henceforth, we 
will use P(X; +0)  for the distribution function of X observationally con- 
ditioned at time t = + 0 instead of the more explicit form P(X  I z; - 0). 

2.6. Measurable Invariants 

In general, one would expect in the case of ordinary phase space that 
there would exist 2 f -  1 dynamical invariants. However, it turns out that 
most of  these invariants, particularly in large systems, have corresponding 
shells that fill all of  microstate space or at least certain subspaces correspond- 
ing to the shells of  well-behaved invariants. Such aberrant invariants are 
called nonuniform, nonintegrable, or nonmeasurable. 

The determination of the set of measurable dynamical invariants for 
specified systems remains a largely unsolved problem. For  special simple 

8 For a discussion of conditioning see van der Waerden57~ 
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systems, e.g., a set of harmonic oscillators with irrational frequency ratios, 
hard spheres in a box, and a few others, this problem has been solved. 9 

In the case of a system of identical interacting particles in a rigid con- 
tainer or in a space with cyclic boundary conditions (toroidal topology), it 
appears that the only known measurable invariants are associated with 
symmetry. First of all, the Hamiltonian itself arises from time-translation 
invariance. The system with cyclic boundary conditions may be invariant to 
spatial translations in three independent directions, in which case the three 
components of total linear momentum are measurable dynamical invariants. 
In the case of a perfectly smooth, rigid, cylindrical container, the component 
of total angular momentum parallel to the cylindrical axis is a measurable 
dynamical invariant if certain additional conditions are satisfied. 

For  an isolated self-contained system in space, e.g., the solar system or a 
galaxy, there are at least seven measurable dynamical invariants: the Hamil- 
tonian, three components of total linear momentum, and three components 
of  total angular momentum. That these are the only measurable dynamical 
invariants in a system of  point masses interacting with gravitational forces 
has been proved by Poincar6. (9~ We hasten to remark that thermodynamic 
equilibrium does not exist in such a system. 

The above discussion applied to state spaces composed only of co- 
ordinates and momenta. There are many situations in which it is expedient, 
and sometimes mandatory, to extend the state space to include other quanti- 
ties which were formerly just time-independent parameters in the Hamiltonian. 
The most familiar example of this is the state space used in the grand canoni- 
cal ensemble. In this example, the total numbers of particles of  various kinds 
constitute additional microstate variables and hence additional dynamical 
invariants. In the earlier discussion these were implicit constants in the 
Hamiltonian. In the context of adaptive control, it is usually necessary to 
include in the state vector other kinds of parameters whose values are not 
known a priori. If  these parameters are time independent, which is frequently 
true, then they must be treated as dynamical invariants. In an obvious sense, 
these dynamical invariants are always measurable. 

In real physical systems, the question of  the existence of measurable 
dynamical invariants is usually a matter of the relative rates of change of 
various functions of the state. One usually uses a Hamiltonian that is only 
approximate in that it ignores many slow processes which of course vitiate 
its strict invariance. With the true equations of motion, the approximate 
Hamiltonian will be slowly varying. If  it varies sufficiently little during the 
course of  an experiment, then it can be regarded as invariant in a practical 
sense. In a system of metastable, but slowly decaying molecules, an approxi- 

9 For further discussion of these matters see Ref. 8. 
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mate Hamiltonian that ignores the decay processes is an example of  the 
general situation discussed above. As long as the duration of an experiment 
is short compared with the decay time, this Hamiltonian will be satisfactory 
in a practical sense. 

For  a more detailed discussion of  dynamical invariants the reader is 
urged to consult the book by Farquhar.  (1~ 

3. A PARTIALLY VALID DERIVATION OF THE INITIAL 
D ISTRIBUTION FUNCTION 

The simplest approach to the problem of the initial distribution function 
is to assume that a set of  observations is made at the initial time t --- 0 with 
a very flat distribution immediately prior to t = 0. The observationally 
conditioned distribution existing a moment  later is then taken as the initial 
distribution. 

In explicit terms, we assume that the prior distribution function is 
P(X; - 0) at the time t = - 0. At the time t = 0, the macroscopic observables, 
defined by the n-vector function F(X)  contained in ~ ,  are observed with 
errors defined by (35). The observationally conditioned distribution is, 
according to (38), given by 

P(X; + O) = e(~)P(X; - O)Pn(g - F(X))  (39) 

in which ~ are the values of  the observations. 
I f  the prior distribution function P(X; - 0 )  is sufficiently flat over the 

region of X space in which P~(~ - F(X))  exceeds a certain threshold 1~ 0, 
then we can as an approximation replace P(X; - 0 )  by a constant, thereby 
obtaining 

P(X; 0) = d(ff)Pn(~ - F(X))  (40) 

In this expression d(ff) is a new normalization "cons tan t "  defined by 

d(~)-i = f dXPn(~ - F(X))  (41) 

Since F(X)  ~ ./g, it follows that P(X; + 0) ~ J~" and hence by the definition 
of Section 2.4, it is a coarse-grained distribution. 

This result corresponds to the old doctrine of uniform a priori distri- 
butions in phase space. This assumption is invariant to contact transforma- 
tions and hence avoids within this context the paradox that what is " m o s t  
r a n d o m "  in one coordinate system is not in another. However, some investi- 
gators are not willing to accept this assumption or even the somewhat weaker 

10 It is appropriate to choose 0 such that ~Pn<0 dXP, << ~ dXPn. 
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assumption that the distribution function is quite flat over the region in 
which Pn > 0. 

We have not found a convincing way of  justifying the assumption of a 
distribution function P ( X ; - 0 )  that is nearly constant in any extended 
domain. However, in the subsequent discussion we will derive by other 
arguments forms of P(X; 0) that are functions of H and of any other measur- 
able dynamical invariants that may exist. 

4. THE PRIOR D I S T R I B U T I O N  F U N C T I O N  

In this section we present a derivation of  the prior distribution function 
based upon a limit of performable operations. 11 

4.1. Random Select ion  of  M i c r o s t a t e s  

Let us consider the random selection of microstates X at random past 
times to. Such a random procedure is described by the joint distribution 
function P(X, to) which, of course, vanishes for to >/ 0. We now make the 
assumptions that X and to are statistically independent, i.e., 

P(X, to) = P(JOP(to) (42) 

This in turn means that 

P(X)o) ~ P(X, to)/P(to) = P(X) (43) 

The distribution function on X at any nonnegative time t is then given by s 
P(X; t) = dto P(t0){exp[- (t - t0)~]} P(X) (44) 

c o  

in which ~o is the Liouville operator defined by (9). 
It is to be stressed that the above assumptions are very weak indeed. 

That random microstates are chosen at random times is the inevitable 
microscopic description of  a crude macroscopic selection process. The 
assumption of the statistical independence of  microstates and times is per- 
haps not inevitable but is certainly reasonable. When compared with other 
assumptions often used in the foundations of statistical mechanics, it is 
clearly very innocuous. 

At this point we consider two types of distribution functions of  to: 
(i) very broad distribution functions, i.e., ones yielding very large variances of 

11 This approach is analogous to the method of arbitrary functions in probability theory. 
An example is the dropping of a coin with an arbitrary distribution function of initial 
conditions from increasing heights. 
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to; and (ii) distributions that are peaked in the very remote past, i.e., those 
corresponding to very large negative means of  to, We will show that if the 
system is ergodic, most distribution functions of to of type (i) will yield a 
P(X; t), t >1 O, that is a function only of the Hamiltonian H (and of any 
other measurable dynamical invariants). We will also show that any distri- 
butions of type (ii) will yield a distribution function P(X; t) that is a function 
only of H and other measurable invariants if the system possesses the so- 
called mixing property. 

4.2. The Ergodicity Assumption 

Let us analyze in more explicit detail the assertion associated with type 
(i) distributions of to. Let us consider a distribution function of the form 

e(to) = l/T, - T  < to < 0 

= 0, otherwise (45) 

In the limit T--~ 0% we obtain ;o 
P(X; t) = Lim ( l /T)  dto {exp[ - ( t  - to)5r P(X) (46) 

T ~  T 

The theorems of von Neumann (11) and of Birkhoff (12~ assert that the 
above limit exists in the mean or almost everywhere, respectively. It can be 
proved that for t finite and nonnegative, the distribution function P(X; t) is 
independent of t. If H is the only measurable dynamical invariant, i.e., the 
system is ergodic, then clearly P(X; t) is a function of H alone. Therefore 
we obtain 

( l /T)  ( - u  dto {exp[-  (t - to)~]}P(X) = PC(H) (47) Lira 
r 

almost everywhere and by multiplication by 3(H - E) and integration on X 
we deduce that 

Pc(E) = [ f dx ~(H- E)P(JO]/ f d_g ~(H- E) (48) 

Thus P~ is obtained from P(X) by uniformizing P(X) within each energy 
shell. 

4.3. The Mixing Assumption 

We turn now to the consideration of  the type (ii) distribution function of 
t o . Let us assume that 

e(to) = r -- T) 
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with 

r  if to />0 (49) 

Then (44) becomes 

f__o P(X; t) = dto r - T){exp[-(t  - to)Sfl}P(JO (50) 
o o  

We now make a stronger assumption, namely that the system possesses the 
mixing property. This property implies the ergodic property. Here, the mixing 
property can be defined by the statement that the limit 

Lim ( dX g(X){exp[- (t - to)=LP]}P(X) (51) 
t 0 ~  - -  co  j 

exists for an arbitrary function g(X) of well-behaved character, i.e., 
fdXg2(X)P(X)  < oo. A direct corollary of the definition of the mixing 
property is that the limit is independent of t, i.e., 

Lira ( dX g(X){exp[- (t - to)~L~']}P(X) 
t O - +  --  oO J 

= Lira f dXg(X)[exp(to~)]P(X) (52) 
t 0 - - -~  - -  c o  d 

It should be emphasized that (51) is a weaker definition of mixing than 
is usually employed. The usual definition is concerned only with mixing in 
an infinitesimal energy shell (or conceivably a measurable, invariant sub- 
space of this energy shell). Our weaker definition can admit situations in 
which there is no mixing within energy shells but in which there is mixing 
between energy shells (i.e., a process in which two points in neighboring 
shells become decorrelated). 

It is to be emphasized that the limit (51) corresponds to the notion of 
weak convergence. The limit in the sense of strong convergence, i.e., 

Lira { e x p [ - ( t -  to)S~]}P(X) (53) 
~ 0  ~ - -  

does not exist except when P(X) is a measurable invariant. As is well known, 
the volume of X space for which {exp[-( t  - to)~]}P(X) > A /> 0 is inde- 
pendent of to, as is illustrated by the analogy of the stirring of coffee and 
cream (with interdiffusion neglected). Thus if P(X) is noninvariant and if the 
system has the mixing property, the above limiting process corresponds to 
{ e x p [ - ( t -  to)C~]}P(X) developing increasingly fine-grained striations 
oriented almost parallel to the trajectories in X space. In calculating the 
average of any well-behaved function g(X), these striations are "smoothed 
out"  when t - to is sufficiently large and hence a limit can exist in this sense. 
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In the case where P(to) = r  - T) we can show for  an arbitrary, 
well-behaved funct ion g(X)  that  the following results hold:  

Lim ( d X g ( X ) P ( X ;  t) 
T - - ~  - -  QO o 

= Lim d X g ( X )  dto r  - T ) { e x p [ -  (t - to)La]} P(X)  
T - +  - -  oo oo 

;o f = Lim dto r - T) d X g ( X ) { e x p [ -  (t - to)L-e]} P(X)  
T~--oD --co 

= Lim due(u) d X g ( X ) { e x p [ - ( t  - u - T)SF]}P(X) 
T-*- oo oo 

fo 
= du r Lim d X  g ( X ) { e x p [ -  (t - u - r ) ~ l I e ( X )  

oo T - - *  - -  oo 

f_o f = du r Lim d X g ( X ) { e x p [ - ( t  - u - T)~~ 
oo T+U'-* - ~176 

= Lim f d X g ( X ) { e x p [ - ( t  - T ) ~ I } P ( X )  (54) 
T ~ - o o  J 

Thus  the case of  a distribution o f  times to we obtain the same limit as (51) 
when the center o f  the distribution recedes to - o o .  Again a direct corollary 
is that  

( d X  g(X)P(X,  t) (55) Lira 

is independent  o f  t. 
I f  H is the only measurable dynamical  invariant and if g(X) is not  in 

general invariant, then it is clear that  

( dX  g(X)P(X;  t) = f dX  g(X)PC(H) (56) Lim 
T~-oo J d 

since the lhs is independent  o f  t. As a special case let us assume that  g(X)  
is an invariant o f  the form 

g(X) = x ( E -  H)  (57) 

where X(U) is the unit step function defined by 

x(u)  = 1, u >1 0 

= 0, u < 0 (58) 
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we obta in  

f dXx(E - h)PC(H) = Lim ( d x  x(E - H)P(X[t) 
T - * - -  oo 

= T~-~Lim fdXx(E- H ) { e x p [ - ( t  - T)SF]}P(X) 

= f dXx(E - H)P(X) (59) 

Differentiat ion 12 on E yields 

f dX 3 ( E -  H)P'(H) = PC(E) f dX 3 ( E -  H) = f dX 3 ( E -  H)P(X) (60) 

o r  

, C ( E ) = [ f d X S ( E - H ) P ( X ) ] / f d X S ( E - H )  (61) 

which, o f  course, is identical to (48) obta ined under  the ergodicity assumption.  

4.4. Several Measurable  Dynamical  Invariants 

In  the case in which there are addi t ional  measurable  dynamical  invariants,  
the previous results can be modified in a s t ra ightforward way. Let  the set o f  
measurable  dynamical  invariants  be denoted by 

I = (II(X) .... , Iq(X)) (62) 

where it is assumed that  one o f  the 18 is the Hami l ton ian  or tha t  the Hami l -  
ton ian  can be expressed as a funct ion of  L We require the manifo ld  sO/ to  
be such that  it c o n t a i n s / ,  i.e., 18 ~ -//4, s = 1 .... , q. We must  consider a more  
general dynamical ly  invar iant  density, i.e., PC(I) -- PC(I1 ,..., Iq). An appro-  
priate general izat ion of  the preceding analysis yields the result 

PC(I~176176  (63) 

in which the 10 is a set o f  possible numerical  values of  I(X). 

5. THE INITIAL D I S T R I B U T I O N  

We have proved  that  the r a n d o m  selection of  states at r a n d o m  past  
t imes will under  certain assumpt ions  yield at t = - 0  a prior  distr ibution 
that  is a funct ion only of  the Hami l ton ian  and also of  any other measurable  

i2 It is of course understood that the limit T--+ -co is carried out before performing 
differentiation. 
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dynamical invariants that may exist. We turn next to the use of this result in 
various experimental preparation procedures. We discuss three possibilities. 

5.1. Force Relaxat ion 

Let us suppose that at the time t = 0, certain previously constant forces 
are suddenly relaxed. This means that there are different Hamiltonians for 
negative and positive times, i.e., 

H =  Ho + H1, t < 0  

H = H o ,  t /> 0 (64) 

where it is assumed that Ho and / /1  do not explicitly depend upon the time. 
Let us further assume that Ho, H1 e d4'. Using the random selection of states 
at random past times with appropriate limiting processes discussed in 
Section 4, we obtain 

P(X; -0)  = P C(Ho + 111) (65) 
in which 

Pc(E) = [ f dX ~ ( E -  Ho - H~)P(X)]/ f  dX 3 ( E -  Ho - HO (66) 

If additional measurable dynamical invariants exist, this result must be 
extended in a manner similar to (63). 

The initial distribution function is, by continuity, given by 

P(X; O) = P(X; - 0 )  (67) 

However, it is a nonequilibrium distribution because Ho + //1 is no longer 
a dynamical invariant for t >/ 0 since Ho is now the correct Hamiltonian. 
A possible exception is the case in which/-/1 is also a measurable dynamical 
invariant for t /> 0. Since Ho, / /1  e ~ ' ,  it follows that P(X; 0) = P~(Ho + H~) 
is a special distribution of the coarse-grained type. 

5.2. Constra int  Removal  

Another type of process that may  be regarded as a limiting form of 
force relaxation is the sudden removal of certain constraints. A well-known 
physical example is a sudden removal of a barrier that previously separated 
the gas in a container into two separate parts. If  this barrier passes heat but 
not particles, then as a mild idealization we can assume that Hamiltonian H 
and the number of particles N m on one side are measurable dynamical 
invariants for negative times. For  nonnegative times, after the barrier re- 
moval, the number of particles N (1~ on one side of the surface where the 
barrier was is clearly no longer a dynamical invariant. 
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In the case in which the barrier is impervious to heat and particles, 
then during negative time, the Hamiltonians H (1) and H (2) of  the volumes 
of gas on the two sides as well as the number of  particles N (1) on one side 
are all measurable dynamical invariants. Clearly, after the removal of  the 
barrier, the above quantities cease to be separately invariant and only the 
Hamiltonian H of the united system survives as a measurable invariant. 

There are kinds of  constraints that, while physically unrealizable, make 
possible constrained equilibria which are close approximations to real, 
almost quasistationary situations. The best example of  this is the placement 
of  a barrier along the reaction coordinate in a reacting collision complex--or ,  
more precisely, in all possible reacting collision complexes of  a specified type. 
This viewpoint implicitly underlies many theories of  chemical reaction rates. 

In most situations, the removal of a constraint causes the disappearance 
of  one or more measurable dynamic invariants, e.g., the number of  particles 
on one side of  a barrier. It  is not always true that measurable invariants only 
disappear; in some cases new ones (in fact, new types, not mere perturbations 
of  old ones) may appear. For  example, consider a one-component gas in a 
smooth cylindrical container with an internal barrier that destroys the 
cylindrical symmetry. After the removal of  this barrier, the number of  
particles on one side of  the barrier ceases to be an invariant but, because 
cylindrical symmetry is regained, the total angular momentum parallel to the 
cylindrical axis appears as a valid measurable invariant. However, regardless 
of  how many measurable invariants disappear and appear at the instant the 
constraint is removed, the distribution function P ( X ;  0) is a function of the 
previous measurable invariants and hence is in general noninvariant. I f  the 
previous invariants belong to dg, the initial distribution is coarse-grained. 

5.3 .  O b s e r v a t i o n  a t  t = 0 

Let us assume, as before, that random microstates are selected at random 
past times, whereupon we obtain 

P ( X ;  - 0 )  = P C ( H )  (68) 

is the Hamiltonian H is the only measurable dynamical invariant for t < 0, 
or we obtain 

P ( X ;  - O) = PC(l)  (69) 

if there is more than one dynamical invariant for t < 0. Let us proceed on 
the assumption that H is the only measurable dynamical invariant. 

Let us assume that an observation is made at t = 0 of  the properties 
F ( X )  = ( F I ( X )  .... , F,~(X) with the possible results 

z = F ( X )  + ~q (70) 
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where the m-vector ~ represents the observational errors and has the distri- 
bution P,(~). As shown in Section 2.5, the observationally conditioned 
distribution at t = 0 is then 

P ( X ;  +0)  = c(~)P,(~ - F ( X ) ) P ( X ;  - 0 )  = c(2)P,(2 - F ( X ) ) P e ( H )  (71) 

Therefore, the observational conditioning yields another coarse-grained 
distribution since F j ( X )  ~ d/g, j = 1 .... , n, and of course this new distribution 
is noninvariant if some of the F j ( X )  are noninvariant. 

6. C O M M E N T S  

It has been proved that the analysis of several kinds of experimental 
preparation procedures leads to initial distributions that are functions only 
of a certain' set of macroscopic observables. Our approach consisted of two 
parts: first the random selection of microstates at random past times, a pro- 
cess leading in certain limits to a prior (i.e., t = - 0 )  distribution depending 
only on measurable invariants; and second an initial (i.e., t = 0) operation 
consisting of force relaxation, constraint removal, or observational con- 
ditioning, processes leading to distributions that depend only on a certain 
set of macroscopic variables which are in general noninvariant. The total 
procedure involves one ad hoc assumption, namely the statistical inde- 
pendence of past random microstates and past random times, a rather weak 
assumption which may be removable. 

It is to be emphasized that the above procedure usually yields non- 
equilibrium distributions; however, not all distributions depending only on 
macroscopic variables are yielded by this procedure. Another point, which 
perhaps should be emphasized even more, is that situations involving macro- 

scopic uncertainty are included in our preparation procedure. Thus we are 
not concerned only with the macroscopic behavior of a single system or, 
more loosely, ensembles of single systems with a relatively narrow spread 
of microstates. 

It is of interest to note that distributions that are confined to a single shell 
(H shell, ~ shell, etc.) are special cases of our treatment. One of these can be 
obtained by choosing a random microstate distribution P ( X )  that is confined 
to a shell corresponding to measurable invariants but is not necessarily 
uniform within this shell. Observational conditioning, if it is involved, should 
entail negligible error ~7- 
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